Copper Copper is a soft, ductile metal used primarily for its electrical and thermal conductivity. Copper's high conductivity makes it an ideal material for many heat sinks and heat exchangers, power distribution components such as bus bars, manufacturing equipment including spot welding shanks, antennae for RF communications, and more. The ability to print pure copper using Metal X enables geometrically optimized parts that were previously expensive, time consuming, or impossible to make. | Physical Properties | Test | Temp | Print Setting/
Orientation | Markforged as
Sintered | MIM Standard | |--|---------------------------|-----------|-------------------------------|-----------------------------|----------------------------| | Ultimate Tensile Strength [MPa] | ASTM E8 | Room Temp | Solid XY | 193¹ | 207 | | .02% Tensile Yield Strength | ASTM E8 | Room Temp | Solid XY | 261 | 69 | | Elongation at Break | ASTM E8 | Room Temp | Solid XY | 45 | 30 | | Relative Density | ASTM B923 | Room Temp | Solid | 98² | 98 | | Electrical Conductivity [IACS ³] | ASTM E1004 | Room Temp | Solid XY | 84 | _ | | Thermal Conductivity [W/mk ⁴] | ASTM E1461 | Room Temp | Solid XY & Z | 350 | 328 | | Coefficient of Thermal Expansion | ASTM E831-19 ⁵ | 68-100°F | | 9.6 x 10-6/°F | 8.7 x 10-6/°F | | | ASTM E228 | 68-150°F | | 9.7 x 10-6/°F | 8.9 x 10 ⁻⁶ /°F | | | | 68-200°F | | 9.8 x 10-6/°F | 9.1 x 10-6/°F | | | | 68-250°F | Solid Z | 9.9 x 10-6/°F | 9.3 x 10 ⁻⁶ /°F | | | | 68-300°F | | 10.0 x 10 ⁻⁶ /°F | 9.4 x 10 ⁻⁶ /°F | | | | 68-500°F | | 10.1 x 10-6/°F | _ | | | | 68-750°F | | 10.5 x 10 ⁻⁶ /°F | _ | | Composition | Weight% | | | |-------------|----------|--|--| | Copper | 99.8 min | | | | Oxygen | 0.05 max | | | | Iron | 0.05 max | | | | Other | bal | | | These data represent typical values for Markforged Copper as-sintered. Markforged samples were printed with Solid Infill setting. All values based on 3rd party testing except for relative density which was tested by Markforged. These representative data were tested, measured, and calculated using standard methods and are subject to change without notice. Markforged makes no warranties of any kind, express or implied. ^{1.} Tensile bars are sub-sized and are sliced with default copper settings except raft is turned off. Copper defaults to solid parts. ^{2.} Density is based on a theoretical value of 8.96g/cc. ^{3.} Electrical conductivity, when evaluated with eddy current instruments, is usually expressed as a percentage of the conductivity of the International Annealed Copper Standard (% IACS). The conductivity of the Annealed Copper Standard is defined to be 0.58 × 108 S/m (100 % IACS) at 20°C. ^{4.} Thermal diffusivity measured per ASTM E1461. Diffusivity was converted to Conductivity using, Thermal Conductivity = Thermal Diffusivity * Density * Specific Heat. Assuming specific heat of Copper = 0.385 J/g-K per "Handbook of Chemistry and Physics 72nd Edition." ^{5.} Markforged as-sintered Coefficient of Thermal Expansion (CTE) was measured by a 3rd party lab using Thermal Mechanical Analysis (ASTM E831). The MIM handbook reference used a Push Rod Dilatometer (ASTM E228) ## Copper | Standard | Temp | Print Setting/
Orientation | Markforged as
Sintered | MIM Standard | |----------|-----------|--------------------------------------|---|---| | | | Solid XY | 1931 | | | | | Solid Z | 1171 | | | ASTM E8 | Room Temp | Leak Resistant XY | 1971 | 207 | | | | Leak Resistant Z | 1411 | | | ASTM E8 | | Solid XY | 26¹ | | | | | Solid Z | 26¹ | | | | Room Temp | Leak Resistant XY | 311 | 69 | | | | Leak Resistant Z | 321 | | | | | Solid XY | 451 | | | ASTM E8 | | Solid Z | | | | | Room Temp | Leak Resistant XY | 58¹ | 30 | | | | Leak Resistant Z | 15¹ | | | | ASTM E8 | ASTM E8 Room Temp ASTM E8 Room Temp | Standard Temp Orientation ASTM E8 Room Temp Solid XY ASTM E8 Room Temp Leak Resistant XY Leak Resistant Z Solid XY Solid Z Leak Resistant XY Leak Resistant Z Solid XY ASTM E8 Room Temp Solid XY ASTM E8 Room Temp Leak Resistant XY | Standard Temp Orientation Sintered ASTM E8 Room Temp Solid XY 193¹ Leak Resistant XY 197¹ Leak Resistant XY 197¹ Leak Resistant Z 141¹ Solid XY 26¹ Solid Z 26¹ Leak Resistant XY 31¹ Leak Resistant Z 32¹ ASTM E8 Room Temp Solid XY 45¹ Leak Resistant XY 58¹ |